2011年12月5日星期一

Electronic circuits

An interconnection of electronic devices, an electronic device being an entity having terminals which is described at its terminals by electromagnetic laws. Most commonly these are voltage-current laws, but others, such as photovoltaic relationships, may occur.

Some typical electronic devices are represented as shown in Fig. 1, where a resistor, a capacitor, a diode, transistors, an operational amplifier, an inductor, a transformer, voltage and current sources, and a ground are indicated. Other devices (such as vacuum tubes, switches, and logic gates) exist, in some cases as combinations of the ones mentioned. The interconnection laws are (1) the Kirchhoff voltage law, which states that the sum of voltages around a closed loop is zero, and (2) the Kirchhoff current law, which states that the sum of the currents into a closed surface is zero (where often the surface is shrunk to a point, the node, where device terminals join). Figure 2 represents an electronic circuit which is the interconnection of resistors (R, RB1, RB2, RE, RL), capacitors (C), a battery voltage source (VCC), a current source (is), a bipolar transistor (T), and a switch (S). Functionally Fig. 2 represents a high-pass filter when S is open, and an oscillator when S is closed and the current source is removed. See also Amplifier; Battery; Capacitor; Current sources and mirrors; Diode; Electric filter; Electronic switch; Inductor; Kirchhoff's laws of electric circuits; Oscillator; Resistor; Transformer; Transistor; Vacuum tube.



semiconductor field-effect transistors (MOSFETs). (f) Operational amplifier. (g) Inductor. (h) Transformer. (i) Voltage sources. (j) Current source. (k) Ground.">
Representation of some typical electronic devices. (a) Resistor. (b) Capacitor. (c) Diode. (d) Bipolar junction transistors (BJTs). (e) Metal oxide semiconductor field-effect transistors (MOSFETs). (f) Operational amplifier. (g) Inductor. (h) Transformer. (i) Voltage sources. (j) Current source. (k) Ground.



The devices in an electronic circuit are classified as being either passive or active. The passive devices change signal energy, as is done dynamically by capacitors and statically by transformers, or absorb signal energy, as occurs in resistors, which also act to convert voltages to currents and vice versa. The active devices, such as batteries, transistors, operational amplifiers, and vacuum tubes, can supply signal energy to the circuit and in many cases amplify signal energy by transforming power supply energy into signal energy. Often, though, they are used for other purposes, such as to route signals in logic circuits. Transistors can be considered the workhorses of modern electronic circuits, and consequently many types of transistors have been developed, among which the most widely used are the bipolar PCB Assembly junction transistor (BJT), the junction field-effect transistor (JFET), and the metal oxide silicon field-effect transistor (MOSFET). See also Electronic power supply.

Fortunately, most of these transistors occur in pairs, such as the npn and the pnp bipolar junction transistors, or the n-channel and the p-channel MOSFETs, allowing designers to work symmetrically with positive and negative signals and sources. This statement may be clarified by noting that transistors can be characterized by graphs of output current i versus output voltage v that are parametrized by an input current (in the case of the bipolar junction transistor) or input voltage (in the MOSFET and JFET cases). Typically, the curves for an npn bipolar junction transistor or an n-channel field-effect transistor are used in the first quadrant of the output i-v plane, while for a pnp bipolar junction transistor or a p-channel field-effect transistor the same curves show up in the third quadrant. Mathematically, if i = f(v) for an npn bipolar junction transistor or n-channel field-effect device, then i = −f(−v) for a pnp bipolar junction transistor or p-channel field-effect device when the controlling parameters are also changed in sign.

Transistors

Transistors are basic to the operation of electronic circuits. Bipolar transistors have three terminals, designated as the base B, the collector C, and the emitter E. These terminals connect to two diode junctions, B-C and B-E, these forming back-to-back diodes. The B-E junction is often forward-biased, in which case its voltage is about 0.7 V, while the B-C junction is reverse-biased for linear operation.

Besides biasing of the junctions for linear operation, any state of the two junctions can occur. For example, both junctions might be forward-biased, in which case the transistor is said to be in saturation and acts nearly as a short circuit between E-C, while if the junctions are simultaneously back-biased the transistor is said to be cut off and acts as an open circuit between all terminals. The transistor can be controlled between saturation and cutoff to make it act as an electronically controlled switch. This mode of operation is especially useful for binary arithmetic, as used by almost all digital computers, where 0 and 1 logic levels are represented by the saturation and cutoff transistor states.

MOSFETs have three regions of operation: cutoff, saturated, and resistive. The MOSFET also has three terminals, the gate G, the drain D, and the source S. A key parameter characterizing the MOSFET is a threshold voltage Vth. When the G-S voltage is below the threshold voltage, no drain current flows and the transistor is cut off.

The MOSFET is a versatile device, acting as a voltage-controlled current source in the saturation region and approximately as a voltage-controlled resistor in the resistive region. It can also be electronically controlled between cutoff and the resistive region to make it act as a switch, while for small signals around an operating point in the saturation region it acts as a linear amplifier. Another feature of the MOSFET is that, besides the categories of n-channel and p-channel devices, there are also enhancement- and depletion-mode devices of each category. In practice, for electronic circuit considerations, an n-channel device has Vth > 0 for enhancement-mode devices and Vth < 0 for depletion-mode devices, while the signs are reversed for p-channel devices.

Biasing of circuits

Since active devices usually supply signal energy to an electronic circuit, and since energy can only be transformed and not created, a source of energy is needed when active devices are present. This energy is usually obtained from batteries or through rectification of sinusoidal voltages supplied by power companies. When inserted into an electronic circuit, such a source of energy fixes the quiescent operation of the circuit; that is, it allows the circuit to be biased to a given operating point with no signal applied, so that when a signal is present it will be processed properly. To be useful, an electronic circuit produces one or more outputs; often inputs are applied to produce the outputs. These inputs and outputs are called the signals and, consequently, generally differ from the bias quantities, though often it is hard to separate signal and bias variables. Biasing of electronic circuits is an important, nontrivial, and often overlooked aspect of their operation.

Analog versus digital circuits

Electronic circuits are also classified as analog or digital. Analog circuits work with signals that span a full range of values of voltages and currents, while digital circuits work with signals that are at prescribed levels to represent numerical digits. Analog signals generally are used for continuous-time processes, while digital ones most frequently occur where transistions are synchronized via a clock. However, there are situations where it is desirable to transfer between these two classes of signals, that is, where analog signals are needed to excite a digital circuit or where a digital signal is needed to excite an analog circuit. For example, it may be desired to feed a biomedically recorded signal, such as an electrocardiogram into a digital computer, or it may be desired to feed a digital computer output into an analog circuit, such as a temperature controller. For such cases, there are special electronic circuits, called analog-to-digital and digital-to-analog converters. See also Analog-to-digital converter; Digital-to-analog converter.

Feedback

An important concept in electronic circuits is that of feedback. Feedback occurs when an output signal is fed around a device to contribute to the input of the device. Consequently, when positive feedback occurs, that is, when the output signal returns to reinforce itself upon being fed back, it can lead to the generation of signals which may or may not be wanted. Circuit designers need to be conscious of all possible feedback paths that are present in their circuits so that they can ensure that unwanted oscillations do not occur. In the case of negative feedback, that is, when the output signal returns to weaken itself, then a number of improvements in circuit performance often ensue; for example, the circuit can be made less sensitive to changes in the environment or element variations, and deleterious nonlinear effects can be minimized. See also Control systems; Feedback circuit.

Digital circuits

The digital computer is based on digital electronic circuits. Although some of the circuits are quite sophisticated, such as the microprocessors integrated on a single chip, the concepts behind most of the circuits involved in digital computers are quite simple compared to the circuits used for analog signal processing. The most basic circuit is the inverter; a simple realization based upon the MOS transistor is shown in Fig. 3a. The upper (depletion-mode) transistor acts as a load “resistor” for the lower (enhancement-mode) transistor, which acts as a switch, turning on (into its resistive region) when the voltage at point A is above threshold to lower the voltage at point B. Adding the output currents of several of these together into the same load resistor gives a NOR gate, a two-input version of which is shown in Fig. 3b; that is, the output is high, with voltage at VDD, if and only if the two inputs are low. Placing the drains of several of the enhancement-mode switches in series yields the NAND gate, a two-input version of which is shown in Fig. 3c; that is, the output is low if and only if both inputs PCB Assembly  are high. From the circuits of Fig. 3, the most commonly used digital logic circuits can be constructed. Because these circuits are so simple, digital circuits and digital computers are usually designed on the basis of negation logic, that is, with NOR and NAND rather than OR and AND circuits. See also Digital computer; Integrated circuits; Microprocessor.

没有评论:

发表评论